Market design of college-major switches for reducing student-major mismatch

Umut Dur[†] Yi-Cheng Kao[‡] Scott Paiement[§]

[†]Department of Economics, North Carolina State University

[‡]Department of Economics, Fu Jen Catholic University

§Department of Economics, North Carolina State University

October 28, 2024

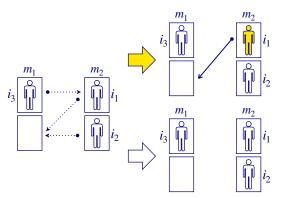
Outline

- Background
- New Mechanism
- Improvements
- Implementation at NTU
- Summary

College Admissions in Taiwan

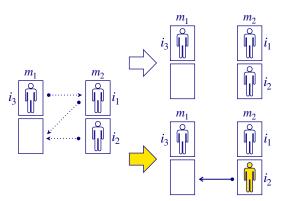
- In Taiwan, most students have to choose college-major pairs jointly in college admissions. Similar practices can be found in Chile, Japan, Spain, and Turkey.
- Each college-major enrollment is subject to the admission quota, which is regulated by the government.
- When applying to college-major pairs, some students propose the ranking list based on colleges' prestige rather than their preference over majors, and their assigned majors might not be a good fit.

College Admissions in Taiwan


- In Taiwan, most students have to choose college-major pairs jointly in college admissions. Similar practices can be found in Chile, Japan, Spain, and Turkey.
- Each college-major enrollment is subject to the admission quota, which is regulated by the government.
- When applying to college-major pairs, some students propose the ranking list based on colleges' prestige rather than their preference over majors, and their assigned majors might not be a good fit.
- As a result, those students are more likely to drop out.
- In a government survey in 2019, 24.6% of Taiwanese students who drop out of college is due to the mismatch between students and majors.

Conventional Major Switching in Taiwan

- When some students drop out of a college, the demand for matching is from the reallocation of vacant seats to remaining students at that college, i.e., major switching.
- The conventional major-switching mechanism in Taiwan is a matching between students and majors (departments) who provides available seats (vacant seat), and the number of major switches is constrained by the total vacant seats.


Conventional Major Switching in Taiwan

- For example, a college has student i_3 from major m_1 desiring to switch to m_2 . However, this college only has a vacant seat at m_1 , and students i_1 and i_2 from m_2 apply to m_1 for major switching.
- In the conventional process, only one major switch can occur,
 i.e., either i₁ switches to m₁ or i₂ switches to m₁.

Conventional Major Switching in Taiwan

- For example, a college has student i_3 from major m_1 desiring to switch to m_2 . However, this college only has a vacant seat at m_1 , and students i_1 and i_2 from m_2 apply to m_1 for major switching.
- In the conventional process, only one major switch can occur,
 i.e., either i₁ switches to m₁ or i₂ switches to m₁.

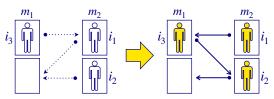
Problem

- Since many applicants are rejected by popular majors, the percentage of applicants who successfully switches to a new major (the success rate) is usually low.
- For example, in 2020, there were 634 applicants at National Taiwan University (NTU) and the success rate was 43.62%.

Problem

- Since many applicants are rejected by popular majors, the percentage of applicants who successfully switches to a new major (the success rate) is usually low.
- For example, in 2020, there were 634 applicants at National Taiwan University (NTU) and the success rate was 43.62%.
- We thus propose a new mechanism to deal with the problem.
- Our new mechanism has been adopted by NTU since 2022.

Outline


- Background
- New Mechanism
- Improvements
- Implementation at NTU
- Summary

Intuition behind the new mechanism

- The intuition behind the new mechanism: (1) **quota expansion** and (2) **secure matching** process.
- In the new mechanism, we expand a major's quota by adding the number of its students who have applied for major switching.

Intuition behind the new mechanism

- The intuition behind the new mechanism: (1) quota expansion and (2) secure matching process.
- In the new mechanism, we expand a major's quota by adding the number of its students who have applied for major switching.
- For example, a college only has a vacant seat at major m₁, and students i₁ and i₂ from major m₂ apply to m₁ for major switching.
- If we also have student i₃ from m₁ who applies to m₂, three major switches can occur, i.e., i₁ and i₂ switch to m₁, and i₃ switches to m₂.

Model

- I: Set of students
- M: Set of majors

Model

- I: Set of students
- M: Set of majors
- $q = (q_m)_{m \in M}$: Quota vector
- $\mu: I \to M \cup \emptyset$: Initial student-major matching function
 - $|\mu^{-1}(m)| \leq q_m$ for all $m \in M$
 - $v_m = q_m |\mu^{-1}(m)|$: Number of vacant seats at major m

Model

- I: Set of students
- M: Set of majors
- $q = (q_m)_{m \in M}$: Quota vector
- $\mu: I \to M \cup \emptyset$: Initial student-major matching function
 - $|\mu^{-1}(m)| \le q_m$ for all $m \in M$
 - $v_m = q_m |\mu^{-1}(m)|$: Number of vacant seats at major m
- $P = (P_i)_{i \in I}$: (Strict) Preference profile of students over $M \cup \emptyset$
- $\succ = (\succ_m)_{m \in M}$: (Strict) Ranking profile of majors over $I \cup \emptyset$

The new mechanism works as follows:

• The college announces the number of vacant seats on every major, i.e., v_m for all $m \in M$.

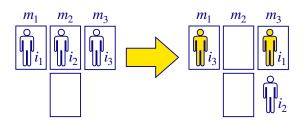
- The college announces the number of vacant seats on every major, i.e., v_m for all $m \in M$.
- ② Each student at most can apply to n majors with an ordered preference over these majors; in addition, the college artificially specifies her initial major as the (n+1)th choice in the matching.

- The college announces the number of vacant seats on every major, i.e., v_m for all $m \in M$.
- ② Each student at most can apply to n majors with an ordered preference over these majors; in addition, the college artificially specifies her initial major as the (n+1)th choice in the matching.
- Each major determines an ordered preference over the students applying to the major; in addition, the college puts the applicants from the major on the top of its ordered preference.

- The college announces the number of vacant seats on every major, i.e., v_m for all $m \in M$.
- ② Each student at most can apply to n majors with an ordered preference over these majors; in addition, the college artificially specifies her initial major as the (n+1)th choice in the matching.
- Each major determines an ordered preference over the students applying to the major; in addition, the college puts the applicants from the major on the top of its ordered preference.
- 4 Let l_m be the number of applicants from major m. The college sets the major-switching quota as $(v_m + l_m)$ for all $m \in M$.

- The college announces the number of vacant seats on every major, i.e., v_m for all $m \in M$.
- ② Each student at most can apply to n majors with an ordered preference over these majors; in addition, the college artificially specifies her initial major as the (n+1)th choice in the matching.
- Each major determines an ordered preference over the students applying to the major; in addition, the college puts the applicants from the major on the top of its ordered preference.
- **3** Let l_m be the number of applicants from major m. The college sets the major-switching quota as $(v_m + l_m)$ for all $m \in M$.
- According to the preferences of students and majors, the college matches students to majors via the student-proposing or major-proposing deferred acceptance algorithms (DASP or DAMP).

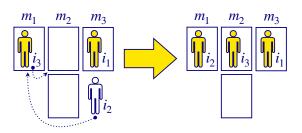
Example with n = 2


- We have three students i₁, i₂, and i₃ with the initial majors m₁, m₂, and m₃, respectively. In addition, m₂ has a vacant seat.
- Under the DASP mechanism, students can apply to m₁, m₂, or m₃ for major switching.
- The preferences are illustrated as follows:

$$i_1: m_3 - m_2 - m_1$$
 $m_1: i_1 - i_2 - i_3$
 $i_2: m_3 - m_1 - m_2$ $m_2: i_2 - i_1 - i_3$
 $i_3: m_1 - m_2 - m_3$ $m_3: i_3 - i_1 - i_2$

DASP Algorithm

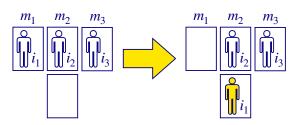
Preferences: $i_1: m_3 - m_2 - m_1$ $m_1: i_1 - i_2 - i_3$ $i_2: m_3 - m_1 - m_2$ $m_2: i_2 - i_1 - i_3$ $i_3: m_1 - m_2 - m_3$ $m_3: i_3 - i_1 - i_2$


Step 1: Students apply to their first choice.
 Since m₃ prefers i₁ to i₂, i₂ is rejected.

DASP Algorithm and Matching Outcome

	$i_1: m_3 - m_2 - m_1$	$m_1: \iota_1 - \iota_2 - \iota_3$
Preferences:	$i_2: m_3 - m_1 - m_2$	$m_2: i_2-i_1-i_3$
	$i_3: m_1 - m_2 - m_3$	$m_3:i_3-i_1-i_2$

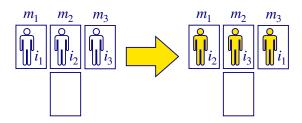
• **Step 2**: i_2 apply to her second choice m_1 . Since m_1 prefers i_2 to i_3 , i_3 is assigned to her second choice m_2 .


Outline

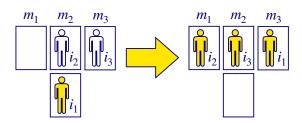
- Background
- New Mechanism
- Improvements
- Implementation at NTU
- Summary

Matching under the Conventional Mechanism

	$i_1: m_3 - m_2 - m_1$	$m_1: \iota_1 - \iota_2 - \iota_3$
Preferences:	$i_2: m_3 - m_1 - m_2$	$m_2: i_2-i_1-i_3$
	$i_3: m_1 - m_2 - m_3$	$m_3:i_3-i_1-i_2$


• **Outcome**: Since there is one vacant seat at major m_2 , students i_1 and i_3 apply to m_2 but only i_1 is assigned m_2 .

Matching under the DASP


	$i_1: m_3 - m_2 - m_1$	$m_1: i_1-i_2-i_3$
Preferences:	$i_2: m_3 - m_1 - m_2$	$m_2: i_2-i_1-i_3$
	$i_3: m_1 - m_2 - m_3$	$m_3:i_3-i_1-i_2$

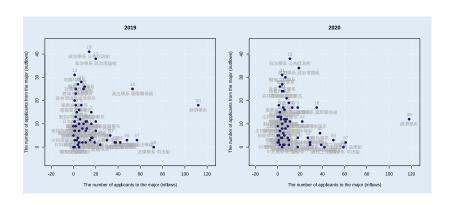
Outcome: i₁ is assigned her first choice.
 i₂ and i₃ are assigned their second choice.

Improvements

- Compared to the conventional mechanism, the DASP mechanism improves students' welfare in the following sense:
 - \rightarrow Student i_1 is assigned her most preferred major under the DASP while she is assigned the second choice under the conventional mechanism.
 - \rightarrow Students i_2 and i_3 switch to new majors under the DASP while they stay at the initial majors under the conventional mechanism.
 - \rightarrow The success rate has increased from 50% to 100%.

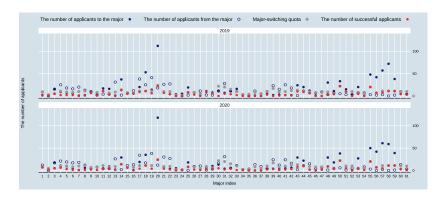
Gains from the new mechanisms

- In general, the new mechanisms has the following features:
 - → (Secure) Students are ensured to be assigned a new major or keep their initial major.
 - → (Non-wasteful) No vacant seats will be wasted, in the sense that whenever a student prefers a new major to her assignment, it must be the case that the major has no vacant seats for her.

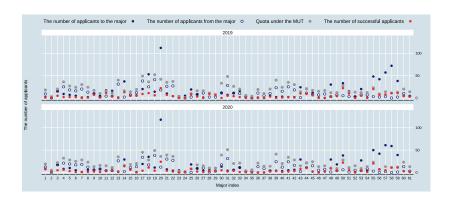

Gains from the new mechanisms

- In general, the new mechanisms has the following features:
 - → (Secure) Students are ensured to be assigned a new major or keep their initial major.
 - → (Non-wasteful) No vacant seats will be wasted, in the sense that whenever a student prefers a new major to her assignment, it must be the case that the major has no vacant seats for her.
- Compared to the conventional mechanism (π') , no students is hurt and some students will be better off under the new mechanisms, i.e., they **Pareto dominate** π' .
- In addition, DASP (weakly) Pareto dominates DAMP.
- Moreover, the number of major switchers is not constrained by the vacant seats, which implies that the success rate can be improved under the new mechanism.

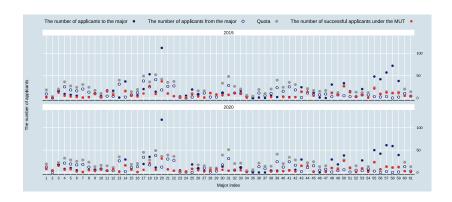
Outline


- Background
- New Mechanism
- Improvements
- Implementation at NTU
- Summary

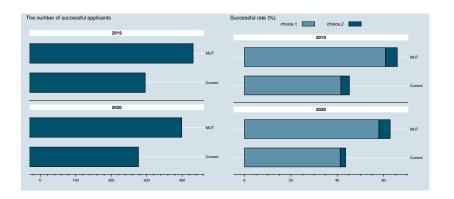
Major Switching at NTU


- There were 654 and 635 applicants at NTU in 2019 and 2020.
- Imbalances between inflows and outflows exist at many majors.
- For example, in 2020, the number of applicants to major 20 (economics) and the number of applicants from it were 118 and 12, respectively.

Quota Constraint


- The number of successful applicants to a major is constrained by its vacant seats.
- For example, in 2020, the number of vacant seats for major 20 was 24, and the success rate in this major was only 20.34%.

Quota Expansion under the new Mechanisms


- A major's quota could be expanded by adding the number of its students who have applied for major switching.
- Thus, more students could have been assigned their desired majors under the new mechanism.

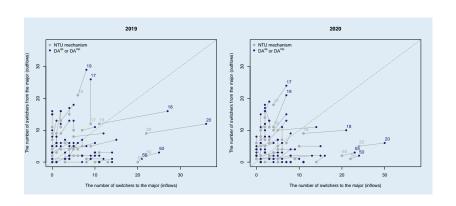
More Switchers under the new mechanism

- According to the student and major preferences, we apply the new mechanism for major switching at NTU in 2019 and 2020.
- The result shows that the number of successful applicants weakly increases in all majors.

Improvements

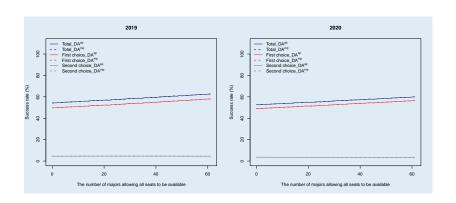
- Compared to the current mechanism at NTU, the success rates under the DASP mechanism are from 45.26% and 43.62% to 62.69% and 60.00% in 2019 and 2020, respectively.
- More students are assigned their first or second choices under the new mechanism.

Success Rate (%) under Different Mechanisms


		2019	
	Current	DASP	DAMP
First choice	41.59	56.73	56.73
Second choice	3.67	5.96	5.96
Total success rate	45.26	62.69	62.69

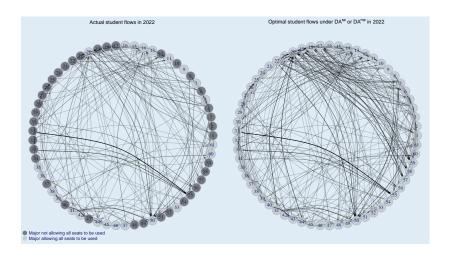
		2020	
	Current	DASP	DAMP
First choice	41.26	55.59	55.59
Second choice	2.36	4.41	4.41
Total success rate	43.62	60.00	60.00

Note: The simulation is based on the assumption that all majors join the new mechanism and provide a complete ranking of eligible students.

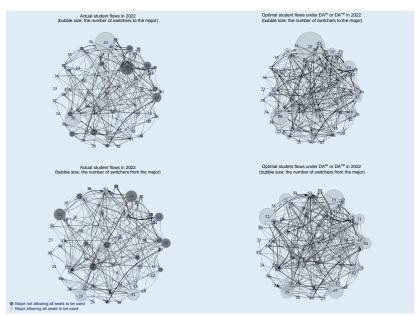


Inflows and Outflows under Different Mechanisms

- Major 20 has the largest increase of students in 2019 and 2020.
- Majors 19 and 17 have the largest decrease of students in 2019 and 2020, respectively.


Number of Majors joining the New Mechanism

- Overall, the success rates under DASP and DAMP are quite similar.
- The welfare gains from more majors allowing all seats to be available is increasing under the two mechanisms.


Implementation Challenges

 Many majors do not joint the new mechanism and do not provide a complete ranking of eligible students.

Inflow and Outflow Bubbles

Outline

- Background
- New Mechanism
- Improvements
- Implementation at NTU
- Summary

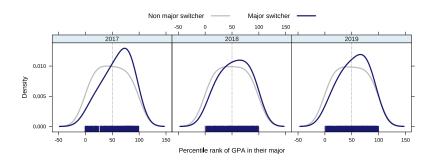
Summary

- The demand for major switching exists because of the mismatch between students and majors.
- Under the conventional mechanism, the success rate of major switching is low at many universities in Taiwan.
- We propose a new mechanism to resolve the problem.
 - Quota expansion
 - Secure matching process
- Our counterfactual analysis for NTU shows that the success rate can increase under the new mechanism.
- More students are assigned their first choice under the new mechanism.
- Implementation challenges:
 - Some majors do not joint the new mechanism
 - Majors do not provide a complete ranking of eligible students

Thank You

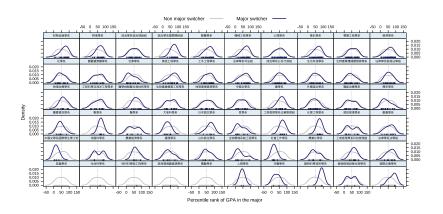
Appendix: Student Performance after Major Switching

- Why do we want to increase the success rate?
- We collect the data of GPA for 2017-2019 graduates at NTU to examine student performance after major switching.


David-4 -4 CD4 4-- 2017 2010 ---- --- --- NTI

 Since the distributions of GPA are quite different between majors, the data needs to be standardized for comparison.

Boxplot of GPA for 2017-2019 graduates at NTU									
2006	1,52,02,53,03,54,0		1.52.02.53.03.54.0	国際公会報告	1.52.02.53.03.54.0	新服装数 中的12年版	1,52,02,53,03,54,0	895	1.52.02.53.03.54.0
d	0 0	d	∞	0				0 000	o cod
開發整殊數學系	會計學系	規則學系	提記工程學系	提記管理學系	開催化學系	類單經濟學系	開發學系	電標工程學系	報告資訊學系
· •			•••	000			∞		0 00
社會學系	政治學系公共行政総	政治學系政治理訓紹	政治學系國際關係総	哲學系	財務金融學系	動物科學技術學系	國際企業學系	森林環境暨資源學系	植物病理與微生物學系
∞ }{•}{	aa	∞	œ œ • · · · • • · · · • · · · · · · • ·	•	•••	• •	•	•	∳• ∤
地理環境資源學系	地質科學系	材料科學與工程學系	日本学系	法律學系司法結	法律學系法學級	法律學系財經法學經	物理治療學系	物理學系	社會工作學系
垃圾圾桶	块嵌料學系	材料特別工程學系 ○○	E	∘ ⊶	法律學系法學位	法律學系數据法學经 COOREST	物理治療學系	物理學系	社會工作學系
			正義學系 						
化學系	心理學系	日本協文學系	牙髄學系	○ 0000 ● -	生化科技學系	生命科學系	生物產業得繳費發展學系	生物產業機能工程學系	生物環境系統工程學系
化學系	心理學系	00		○ □	生化科技學系	生命科學系	生物產業傳播整發展學系	生物產業機能工程學系	生物環境系統工程學系
化學系	心理學系	日本協文學系	牙髄學系	○ 0000 ● -	生化科技學系	生命科學系	生物產業得繳費發展學系	生物產業機能工程學系	生物環境系統工程學系


GPA

Appendix: Student Performance after Major Switching

- We calculate students' percentile rank (PR) of GPA in their major. For example, PR=50 means that the student's GPA is the median of the major, and PR=100 indicates the best GPA.
- The Wilcoxon rank sum test suggests that, major switchers tend to have a higher PR than their peers in the new major.
 (with p-value < 1% to reject the null hypothesis of equal PR between two groups each year).

Appendix: Student Performance after Major Switching

- The first row of the above figure depicts the distributions of the PR in majors who have more major-switching students.
- In most cases, major switchers in those popular majors have a higher mean in PR during this period.

